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Engineering gene inheritance

Many diseases can be tackled by developing strategies to
alter gene inheritance.

e.g) Anti-malarial drug resistance is of enormous public
health importance.

Strategy #1. Develop new drugs against the evolving
resistance strains

Strategy #2. Alter the resistance genes and block their
inheritance.



Mendelian inheritance

50% 50%



(3 YONSEI

Y/ UNIVERSITY

Super-Mendelian inheritance
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Gene drives are genetic systems that greatly increase the odds that a
particular allele will be passed on to offspring
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How gene drive works

Transcription and translation

% @ <

MRNA e/

protein
Digestion

Current Opinion in Genetics & Development

Austin Burt and Vassiliki Koufopanou (2004)



CRISPR/Cas9

A powerful tool that made the idea of engineered gene
drives feasible.

CRISPR is a genetic element that stores DNA from invading
viruses.

Cas9 are enzymes that cut the foreign DNA at specific
locations.
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CRISPR Provides Acquired Resistance
Against Viruses in Prokaryotes

Rodolphe Barrangou,” Christophe Fremaux, Héléne Deveau,® Melissa Richards,*
Patrick Boyaval,? Sylvain Moineau,® Dennis A. Romero," Philippe Horvath?*

Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the
genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages.
We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic
sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the
cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and
resistance specificity is determined by spacer-phage sequence similarity.
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CRISPR/Cas9 mechanism
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https://international.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-
new-era-in-molecular-biology

10


https://international.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology

YONSEI

NIVERSITY

Applications of CRISPR/Cas9

A. Genome Engineering With Cas9 Nuclease B. Genome Engineering By Double Nicking C. Localization With Defective Cas9 Nuclease
With Paired Cas9 Nickases
QActivator
dcas9 N\

Cas9 gRNA Target A P .

v
. —

[ 4 % - .
e el '

{ " Cleavage - — N N /=
e eavage —
g b ' dsDNA — A

7 clea‘vﬁ— : Activation

Target PAM

/ 9 Repressor
i , e 4 —— ‘ \
; = I— . -

S S — * '*—-7\\’- 3 —
Donor DNA Donor DNA Repression
Insertion/ : GFP
deletion v | 5
'> . H_ 2 - -  — ) 'A . -  —1 !
o —— ; = R ——— S
New DNA New DNA New DNA | p——— 8 |
Non-homologous Homology directed Homology directed TN —
end joining (NHEJ) repair (HDR) repair (HDR) Visualization
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new-era-in-molecular-biology
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Cas-9 based gene drive
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Altered gene does not spread Altered gene is always inherited

https://en.wikipedia.org/wiki/Gene drive
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Experimental demonstration

A Mendelian inheritance B MCRinheritance  F 2 L o
: R’

) »
S c y+ » .’/T ':
et ot %

il lele Wil lele v | S8

+ 0+ o+ o+
yellow yellow

C yellow MCR construct
417 418
—_— v —

417 41 410 418
—

9 U6:3-y1-gRNA HA2

ylocus - 500bp
4 5 6|7 8 9" plduds

mosaic ¢ yt @ total

VS S FrSrsrs __
yMeRI x Y@ 0 40 0 50 1 91
yvere x ytd 214 203 11 2 6 436

Gantz et al. Science, vol 348 issue 6233 (2015)
13



Proof-of-principle studies

Successful drive conversion were conducted in yeast, flies,
and mosquitoes.

Highly variable conversion efficiencies — yeast: ~100%, flies:
19-62%, mosquitoes: 87-99%

Recently, successful drive conversion achieved in mice.

14
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Rapid fixation of mutant allele
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Figure 1 Trajectories of introduced MCR alleles reveal that even delete-
rious alleles sweep to fixation very quickly. Only parameter sets leading to
fixation are presented, and all cases shown assume that fitness costs are

recessive (h = 0).

Unckless et al. Genetics, Vol. 201, 425-431 (2015)
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Potential use of gene drive

Population suppression: the drive induces a major genetic
load

Population replacement: The expressed gene induces an
intended phenotypic alteration, such as blocked

transmission of a pathogen.

e.g) Elimination of malaria, dengue, yellow fever, West Nile,
sleeping sickness, Lyme, and others

16
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ARTICLES

nature
biotechnology

OPEN

A CRISPR-Cas9 gene drive targeting doublesex
causes complete population suppression in caged
Anopheles gambiae mosquitoes

Kyros Kyrou2®, Andrew M Hammond!?©®, Roberto Galizi' ”, Nace Kranjc! ©, Austin Burt!,
Andrea K Beaghton!, Tony Nolan!® & Andrea Crisanti!

In the human malaria vector Anopheles gambiae, the gene doublesex (Agdsx) encodes two alternatively spliced transcripts,
dsx-female (AgdsxF) and dsx-male (AgdsxM), that control differentiation of the two sexes. The female transcript, unlike the
male, contains an exon (exon 5) whose sequence is highly conserved in all Anopheles mosquitoes so far analyzed. We found
that CRISPR-Cas9-targeted disruption of the intron 4-exon 5 boundary aimed at blocking the formation of functional AgdsxF
did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype
and complete sterility. A CRISPR-Cas9 gene drive construct targeting this same sequence spread rapidly in caged mosquitoes,
reaching 100% prevalence within 7-11 generations while progressively reducing egg production to the point of total population
collapse. Owing to functional constraint of the target sequence, no selection of alleles resistant to the gene drive occurred in
these laboratory experiments. Cas9-resistant variants arose in each generation at the target site but did not block the spread

of the drive.

Nature biotechnology, November 2018
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Risk of gene drive based on MCR

Despite their promise, gene drive can lead to unintended
geographical spread.

Efforts to address such risk have been made.

- Church et al. (Nature biotechnology, 2015) proposed a
molecular confinement strategy.

- Wu et al. (Nature biotechnology, 2017) proposed an
overwriting strategy.

18
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Molecular confinement
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Overwriting (Reversal) “CATCHA”

a CATCHA construct e
¥
HA1 ANA HA2 JRNA Homologous
+ chromosomes
e as9 4 GenomiCDNA 4 o o - e e = = - e o e
9 CATCHA i
S N -1 .
£ Genomic DNA > Homologous
ATCHA chromosomes
ATCHA™>
FO: § vas-cas9 flies injected with CATCHA construct x4 lethal gRNA CATCHA CATCHA
positive neganve
F1: 4 Balancerfies x & CATCHA (HDR) (HDR) (NHEJ)
F1 fly count 51(57%) 39 (43%)
F2 CATCHA stock
C T 9 F2
FO: vas-cas9 x & CATCHA 3 &
’ g e L5 HOR NHEJ
¥ A
F1 CATCHA 88 123456 1223 a4
Vas-casd ; ebony gRNA <L
F2 CATCHA (HDR) or broken cas9 (NHEJ) —» non-abony
cas9 TACGCCGGCTACA-—===- T LGGAGCC Total
NHEJ 1 TACGCCGGCTACA====== G PGGAGCC
NHEJ 2 TACGCCGGCTACA-===== TG, CGGAGCC F2 non- 92 4 0 96
NHEJ 3 TACGCCGGCTAC === mmx ], CGGAGCC ebony (92.3%)
NHEJ 4 TACGCCGGCTA----———————-4-—- LGGAGCC 3
NHEJ 5 TACG PGGAGCC E2ebon 4 4 0
NHEJ 6 TACG CGGAGCC 4 (7.7%)
NHEJ 7 TACGCCGGCTACACGCCGGCT bGGAGCC
NHEJ 8 TACGC-------=====ee-==JCGGLGGAGCC Total 96 8 0 104
(92.3%) (7.7%) (0%) (100%)

Wu et al. Nature biotechnology 34(2): 137-138 (2016)
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Obijectives

We propose a new strategy of chemical control whereby
drug treatment induces a cleavage of the gene drive
element.

Drug treatment

Cleavage of the gene
drive element

21



COLLEGE OF MEDICINE

Experimental methods

O

N\



yellow gene

D. melanogaster.
The target gene = yellow.

Located on the X-chromosome and produces a yellow
cuticle when knocked out. (X-linked recessive)

3 v g
68 8
3 L 4

A. mutant, B. mosaic, C. wild type
23
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Controllable gene drive (CGD) construct

| 14629 bp ‘

Rippase recombination site (RRS) Rippase recombination site (RRS)

Vasa-Cas9 Vasa-Gene switch 2X UAS-
Rippase
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Mechanism of drug action
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RU486 halts gene drive spread

Mechanism of RU486 Action

26
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Breeding results

Gender of y““P? RU486 F1 crosses [95% CI] F2 crosses [95% CI|
individual dose (uM)
Fl F2
Male Female 0 Male y- progeny: 0% Male y- progeny: 83.46%
Female y- progeny: 100%  Female y- progeny:
200 Male y- progeny: 0% Male y- progeny: 82.92%11
Female y- progeny: 100%  Female y- progeny:
Female Female 0 Male y- progeny: 85.79% Male y- progeny: 89.84%
Female y-  progeny: Female y- progeny:
57.89% ﬂ
200 Male y- progeny: 87.43% Male y- progeny: 90.09%

Female y-  progeny:

54.42%

Female y- progeny:(44.87%
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Interpretation

RU486 acts on the embryo to convert to yCGD+ to
yCGD-.

Both yCGD+ and yCGD- are y- in phenotype, so % y-
frequency in F2 is altered.

Since yCGD- cannot spread, % y- frequency in F3 is
reduced in the RU486 treated group.

28
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Cage population experiments
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Population genetics

p=wild type
g=mutant allele frequency
(p+q=1)

q(t+1) = (homozygote q) + 0.5(heterozygote q) + (converted
homozygote q)

q(t+1) = q(0* + p(©-q(t) + e-p(D)-q(t)
=q(t)(q(t) +p(H)(1 +e))
=q(t)(1 +e-p(b))
(e: MCR efficiency)

31



Population genetics (2)

Sex-specific equations :

(gQm: mutant male, qf: mutant female)

In females,
qr(t+1) = qm () ge(t) + 0.5(pm (V) g (t) + qm () pe()) (1 +€)

In males,

qm (t+1) = q¢(t)
Since y gene is on X-chromosome,

32
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Population genetics (3)

Drug (RU486) converts yCGD+ to yCGD-

q(t+1) =q®)(q®(1-dq1) + p(OI +e))(1-dy)
=q®O@ +p®OA +e)-diq(t)(1-dz)

d;: Drug effect before fertilization (in the germ cells)

d,: Drug effect after fertilization (in the embryo)

33
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Modeling fitting

Model fitting to population phenotype frequency data using
NONMEM.

Since phenotype frequency ranges between 0 and 1, beta
regression was used.

SERROR
;PHENO: y- phenotype frequency prediction

X1 = TAU
X2 = PHENO*TAU
X3 = (1 — PHENO)*TAU

COEFF = EXP(GAMLN(X1))/(EXP(GAMLN(X2))*EXP(GAMLN(X3)))
LOGY = (X2-1)*LOG(DV+1E-06) + (X3-1)*LOG(1-DV) + LOG(COEFF)
Y = -2*LOGY

SESTIM COND -2LL LAPLACIAN 34
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Beta regression method in NONMEM

J Pharmacokinet Pharmacodyn (2013) 40:537-544
DOI 10.1007/s10928-013-9318-0

SHORT REPORT

Mixed-effects beta regression for modeling continuous
bounded outcome scores using NONMEM when data
are not on the boundaries

Xu Steven Xu - Mahesh N. Samtani * Adrian Dunne -
Partha Nandy - An Vermeulen - Filip De Ridder -
The Alzheimer’s Disease Neuroimaging Initiative

Yii|m;, 0, T~ beta (T, (1 — p)7) (1)
I'(1) (ugr—1) (1—pg)t—1
f(yij:0,n;,7)= Y (1 —yy)
’ ) r(l‘;jr)r((l _l‘ij)T) Y ’
(2)
log(l Y ) = g(0, n;, xij) (3)

35
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Estimation result

Model parameters Estimate
(Standard error,

*CV%)

Fixed effect parameters

Drug effect () after fertilization 0.142 (15.22%)
MCR efficiency (e) 0.6713 (9.11%)
% Maternal germline y©¢? 0.8954 (1.79%)

Random effect parameters

Variance of MCR efficiency (e) in random crossing 0.1896 (20.83%)

Variance of % maternal germline y¢? 0.1032 (35.8%)

*CV%: coefficient of variation
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Visual predictive check (2)

yeP F1 males x wild type females
RU486 Off (Closed Test)
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Visual predictive check (3)

y©CeP F1 females x wild type males
RU486 On (Closed Test)
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Visual predictive check (5)

y“eP F1 females x wild type males
RU486 Off (Open Test)
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Visual predictive check (6)

y“eP F1 females x wild type males
RU486 On (Open Test)
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Definition of “brake time”

The time (generations) required for yCGD+ allele
frequency to drop below 5%.

Magnitude of drug effect: The percentage of yCGD+
allele that is converted to yCGD-

44
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Why?
£\
e d
0O-0-0
Wild type yCGD+ yCGD-

When there is no external input, the flow of p 2
q =2 r stops once wild type is depleted.

At steady state, p=0andr=1.

46
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Wild type yCGD+ yCGD-

When wild type is infused at a rate m, g and r are
diluted at a rate n such that a dynamic
equilibrium results that leads to coexistence of p,
g, andr.

47



Comparison with CATCHA

CATCHA “overwrites” the gene drive element.

Just as yCGD+ converts wild type to yCGD+, CATCHA converts
yCGD+ to CATCHA.

N\

- @

CATCHA

48
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Not affected

CGD

i

Reduced due to
dilution

CATCHA |

CATCHA

50



YONSEI

UNIVERSITY

(A) CATCHA allele frequency (s)
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Fithess cost

Wild type fitness = 1

Mutant fitness = 1 — s (s: fitness cost)

Heterozygote dominance (h):

A value ranging from 0O to 1 that dictates how close the
heterozygotes are to the homozygote mutants.

i) h=0:Heterozygotes are phenotypically wild type

ii) h=1:Heterozygotes are phenotypically mutant
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Mechanism of CGD and its effect

RU486 converts a fixed fraction of yCGD+ to yCGD-.

Analysis of individual crosses and model fitting
showed that 9-15% of yCGD+ is converted to yCGD-
given 200 uM of RU486 every generation.
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Wild type immigration and fitness cost

Wild type immigration, or fitness cost can result in a
dynamic equilibrium whereby yCGD+ is not

eradicated.
No wild type e{\ d
immigration ° —> ° —> ‘

Wild type yCGD+ yCGD-

Wild type m e{\ d
immigration | > ° :> a :> ‘
.

Wild type yCGD+ yCGD- 58




CGD vs. CATCHA

CATCHA is a previously reported gene brake system
that converts yCGD+ to itself.

Compared to CGD, it leads to a faster gene drive
brake. This important property, however, has a
downside.
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CGD vs. CATCHA (2)

The rate of yCGD+ elimination by RU486 is constant
per allele.

The rate of yCGD+ to CATCHA conversion, however, is
proportional to CATCHA allele frequency.

Hence, wild type immigration or fitness cost that

reduces CATCHA also reduces yCGD+ to CATCHA
conversion.
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CGD vs. CATCHA (3)

CATCHA is also an irreversible gene brake system.

Once CATCHA is released into the population, it preys
on yCGD+ to self-propagate.

CGD, on the other hand, is a reversible system and
enables the experimenter to fine-control the
equilibrium yCGD+ allele frequency.
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treatment stops yCGD+
decline.

CATCHA, on the other
hand, continues to act
until all yCGD+ is
eradicated.
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Limitations

Only a single dose level (200 uM) used = dose-
response relationship remains elusive.

Practical aspects

1) Cost of RU486 associated with supplying the
population with RU486

2) Treatment duration spanning several generations
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Conclusion

We developed a reversible method to control gene
drive in a chemically responsive manner.

Mathematical modeling showed that both CGD and
CATCHA are capable of controlling gene drive.

However, CGD can reversibly control gene drive and

is more robust to wild type immigration or fitness
costs.
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