Modelling of cardiac ion channels for proarrhythmia risk assay

Jae Boum Youm, MD., PhD.

Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University

Part 1: LQT-3 mutation and drugs

Long QT Syndrome Type 3: Case

- A male infant was born after 37 weeks' gestation to a 40 years old mother, who had been treated throughout pregnancy with flecainide, 100 mg bid, to treat premature atrial contractions (PACs) and non-sustained atrial tachycardia observed by fetal ECG.
- After birth, a Holter monitoring showed a prolonged QTc interval (~527 ms), ventricular premature complex and non-sustained ventricular tachycardia (NSVT). Thus, Long QT syndrome was suspected.

Long QT Syndrome (LQTS)

- LQT1 : loss of function mutation in the KCNQ1 (KvLQT1, α subunit of $I_{Ks})$
- LQT2: loss of function mutations in the KCNH2 (HERG, α subunit of $I_{Kr})$
- LQT3: gain of function mutations in the SCN5 (Na_v1.5, I_{Na})
- LQT4: Ankyrin B
- LQT5: loss of function mutations in the KCNE1 (minK, β subunit of $I_{Ks})$
- LQT-6: loss of function mutations in the KCNE2 (MiRP1, β subunit of $I_{Kr})$

Long QT syndrome begins with early-after depolarizations (EADs)

Brugada syndrome

- A potentially life-threatening heart rhythm disorder
- Type 1 Brugada ECG pattern is detected by an ECG test
- Many don't have any symptoms. if they have, dizziness, fainting, irregular heartbeats, and sudden death at sleep is common.
- 20~25% of cases of Brugada syndrome are are associated with mutations in SCN5A.

Circ Arrhythm Electrophysiol. 2012;5(3):606-616

Inactivated

Na⁺-channels

a subunits

- Na_v1.1 1.3: CNS, PNS, cardiac(1.3)
- Na_v1.4: skeletal m.
- Na_v1.5: cardiac m, Cajal cell
- Na_v1.6: CNS, DRG, PNS, glia
- Na_v1.7: DRG, PNS, Schwann cell
- Na_v 1.8 1.9: DRG
- Na_x: heart, uterus, smooth m., glia

β subunits

- type 1 transmembrane glycoproteins with an extracellular N-terminus and a cytoplasmic C-terminus
- SCN1B, SCN2B, SCN3B, SCN4B

Topology of sodium channel

Topological model of the cardiac sodium channel (Na_v1.5)

Contribution of Na_v1.5 to cardiac action potential

Atrial AP

Ventricular AP

- Upstrok velocity of AP
- Peak of AP
- Conduction velocity in heart tissue

Alterations of I_{Na} by drugs

Pflugers Arch - Eur J Physiol DOI 10.1007/s00424-012-1170-3

ION CHANNELS, RECEPTORS AND TRANSPORTERS

The angiotensin receptor blocker and PPAR- γ agonist, telmisartan, delays inactivation of voltage-gated sodium channel in rat heart: novel mechanism of drug action

Telmisartan slows inactivation of I_{Na}.

Slowing of I_{Na} inactivation elongates the action potential (AP).

Pflugers Arch. 2012;464(6):631-43.

The effect of telmisartan is TTXsensitive.

Pflugers Arch. 2012;464(6):631-43.

Pharmacology of $Na_V 1.5$

Class IA: atrial fibrillation, flutter; supraventricular & ventricular tachyarrhythmias

Ventricular Action Potential

- Class IA: e.g., quinidine
 Moderate Na⁺-channel blockade
 - ↑ ERP
- · Class IB: e.g., lidocaine
 - Weak Na⁺-channel blockade - \downarrow ERP
- Class IC: e.g., flecainide
 Strong Na*-channel blockade
 - $\rightarrow ERP$

quinidine*	anticholinergic (moderate)	cinchonism (blurred vision, tinnitus, headache, psychosis); cramping and nausea; enhances digitalis toxicity				
procainamide	anticholinergic (weak); relatively short half-life	lupus-like syndrome in 25-30% of patients				
disopryamide	anticholinergic (strong)	negative inotropic effect				
Class IB: ventricular tachyarrhythmias (VT)						
lidocaine*	IV only; VT and PVCs	good efficacy in ischemic myocardium				
tocainide	orally active lidocaine analog	can cause pulmonary fibrosis				
mexiletine	orally active lidocaine analog	good efficacy in ischemic myocardium				
<i>Class IC:</i> life-threatening supraventricular tachyarrhythmias (SVT) and ventricular tachyarrhythmias (VT)						
flecainide*	SVT	can induce life-threatening VT				
propafenone	SVT & VT;	β-blocking and Ca ⁺⁺ -channel blocking activity can worsen heart failure				
moricizine	VT; IB activity					

Richard E. Klabunde, PhD. https://www.cvpharmacology.com/antiarrhy/sodium-blockers

Genetic Testing

- Genetic testing
- Sanger sequencing
- SCN5A c.4967C>A, p.A1656D; novel, de novo, variant of unknown significance
- no mutations in major ion channels and transporters such as KCNQ1, KCNE1, KCNH2 or KCNE2 or other channel-related LQTS genes were identified.

Novel A1656D mutation on the SCN5A gene

Assessing Functional Consequences of SCN5A Variants

Assessing Functional Consequences of SCN5A Variants

Whole-cell patch clamp

Gain-of-function effects of A1656D SCN5A mutation on channel gating

Underlying molecular mechanisms of A1656D SCN5A mutation in arrhythmia

● Wild Type ○ A1656D

Distinct Pharmacology of A1656D Mutant Channels

In silico Modeling for Prediction of Drug Effects

Science Advances 1, no. 4, e1400142

Model of Na⁺ channel

Model fitting - genetic algorithm -

Estimate best fits for experimental data using machine learning genetic algorithm

Model fitting - fitting using R -

📧 RStud	o						- 0	
File Edit	. Code View Plots Session Build Debug Profile Tools Help							
• • •	j 😅 🗣 📄 🔂 📥 📄 internation 🔤 🗄 Addins 🔹						🔋 Project: (None) 👻
Fit_5		-	Console Terr	minal × Jobs ×				
	a Source on Save Q 🖉 • 🔲	2	D:/Dropbox/연	!구/연구비 프로젝트/KIT201	I9/염재범 진행/Markov	litting/20190524/		A
30 -			+ return	(yol' o l)				
31	dcldt = p['koc']*y['c2']-p['kco']*y['c1']		+ }					
32	dc2dt = p[:kco]*y[:c1]+p[:kcc]*y[:c3]-(p[:kcc])+p[:kcc])*y[:c2]]		> # Setup	condition				
34	dodt – pi kkoj yj cz jepi koj yj o jepi koj jepi koc jyj o j		·					
35	didt = p['koi']*v['o']-p['kio']*v['i']		> Erev = 6	0	# ^^ rever	sal potenti	al for the ch	.an
36	<pre>return(list(c(dc1dt,dc2dt,dc3dt,dodt,didt)))</pre>		nel	0	# AA 6-144		1	
37	}	10.	\rightarrow Vfl = -12 \rightarrow firstV =	-60	# ^^ first	test noten	1 tial	
38	+ Description for summing integration		> StepV =	5	# ^^ step	pulse incre	ment	
40	# reduction for numerical integration		> episodes	<- 2:ncol(rawD)	# ^^ 1st c	olumn is ti	me, from 2nd	co
41 -			lume: memb	rane current				
42	<pre>y0 = deSolve::lsoda(y=c(c1=ival[1],c2=ival[2],c3=ival[3],o=ival[4],i=ival[5]),</pre>		>				40)	
43	times = seldata\$time,		> fitmatri	x <- matrix(nrow =	= length(episod if number of	es), ncol =	10) # ^	
44	func=StateDt,		1 should b	e 6+1.	, if fumber of	Sto erement	15 0, then h	
45	parms = c(xco=cheta[1], kor=theta[2]		> testv <-	matrix(nrow=leng	th(episodes), n	col=2)	#	fo
47	koi=theta[3].		r test, fi	rst column is vol	tage, second co	lumn is wha	t you want to	s
48	kio=theta[4]		ee					
49			>	-/(00 0 00 0 0	1 0 0000\			-
50	return(y0[,'o'])		Environment	Files Plots Package	e Haln Viewer			
52	3				s nep viewei		A 1000	
53 -	# Setup condition			200m - export • • •	2		- Publish	. 6
54	Erev = 60 # ^^ reversal potential for the channel							
55	Vh = -120 # ^^ holding potential							
56	firstV = -60 # ^^ first test potential							
57	Stepv = 5 # " " step pulse increment anisodas (_2:ncol(nawD) # ^^ ist column is time from 2nd columne; membrane current		Г	_				1
59	episodes (- 2. hoof(raw)) # ist corolline is time, from 2nd coroller, memorane correct			A				1
60	fitmatrix <- matrix(nrow = length(episodes), ncol = 10) # ^^ should match formula below, if number of st0 element is 6, then ncol should be 6	6+	6 -					1
61	testv <- matrix(nrow=length(episodes), ncol=2) # for test, first column is voltage, second column is what you want to see			\$ X				1
62			6	\$ X				1
64	$ \begin{array}{c} \text{Inituar} = (0, 39, 2.5, 9, 6.1, 9.0000) \\ \text{#inituar} = (0, 0.90, 0.886, 0.76, 0.83) \end{array} $		ö -	\$ X				1
65	ivals < -c(0.98, 0, 0, 0, 0, 0, 0)			د م				1
66	gm <- 0.06 # maximum conductance		0 40	• Š				1
67			₽ 0]	l Se				1
68 .	# Fit current		ata	l S				1
70	nor <- 1 # TOP TIMATPIX for (i in enisodes)		9 7 -	1 80				1
71 -			s O	۶ <i>ک</i>	\$.			1
72	Vm = firstV + (i-2)*StepV # set first voltage and size of steps			Ţ	Jacob Contraction			1
73	seldata = data.frame(8 -	I	See.			1
74	time=rawD[c(15:nrow(rawD)),1], Dencemp[c(15:nrow(rawD)),1]/(/r_fram)			6	Tool and			1
75	<pre>Po=c(rawD[c(12:nrow(rawD))_1]/(wn=crev)/gm))</pre>			L .				1
77	resmodel <- nls(Po ~ Fpred(ivals,theta),		8 -	2	`	Contraction of the second		1
78	data-seldata,			ě			Contraction of the local division of the loc	1
79	start=list(theta=initvar).	*					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
80:36	T fit current \$	ript ¢		0 10	20	20	10	
Uista				U 10	20	30	40	
History					seldata©tim	e		
	🕐 io console i 🚔 io source i 👻 💰				Sciduluytini	•		
		Ŧ						

(1) Get rate constant set for model of Na⁺ channel at each voltage

Model fitting

Voltage-koc relation

kco (ms)⁻¹

-2:0

-2.5

0 ကို

0

10

20

Time(ms)

30

40

relation fit between (2)voltage and rate constant set

Model fitting - IV curve fitting -

📧 RStudi	io		- 🗆 X
File Edit	Code View Plots Session Build Debug Profile Tools Help		
• • •] 🞯 • [🔒 🔂 [] 🚔 Go to file/function 🔄 🔯 • Addins •		Project: (None) *
Pit_55	StateModel v3.R × • D test_module_v5(par).R* ×		Console Terminal × Jobs ×
File Edit File Edit File Edit File Edit File Edit File State 94 - 95 96 97 - 98 99 98 99 100 101 - 103 104 105 106 107 108 109 111 112 113 114 115 116 106 107 108 109 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128 129 131 132 131 132 134 135 135 135 135 135 135 135 135	<pre>Code View Plots Session Build Debug Profile Tools Help Code View Plots Session Plot View Profile View Plot View View Plot View View View View View Plot View Plot View View View View View View View View</pre>	Run 🗭 🕈 Source •	<pre></pre>
135 136 - 137 138 139 140 141 142 143 144	<pre>}/ total(s)//total(s)</pre>		8,0 ^{,0} ^{,0}
128:1	Main :	R Script \$	-60 -40 -20 0 20 40
History	Connections		voltago/mV/)
stopC1	i ∰e To Console i ⊒e™ To Source i ♥ _ ∉ uster(c1)	Q, \$	voitage(mv)

Simulated current traces of WT and A1656D

Current-voltage relations and their drug responses

Simulated current-voltage relations and their drug responses

Integration into human atrial and ventricular myocyte models

Nygren et al. (1998), Circulation Research

0.00

100 00

Ten Tusscher and Panfilov (2004), AJP

200 00

400.00 600.00

800 00

500 000

1000 00

0 00 -90 00

300.00 500.00 700.00 900.00

Predicted effect of drugs on human ventricular myocytes

Predicted effect of drugs on human atrial myocytes

WT

A1656D

Is prediction correct?

Mexiletine preferentially resolves ventricular arrhythmias in a proband

Revision in JMCC

Is prediction correct? Yes

Part 2: CiPA

A brief introduction to CiPA (Comprehensive *In Vitro* Proarrhythmia Assay)

TCP Transl Clin Pharmacol

2019;27(1):12-18 https://doi.org/10.12793/tcp.2019.27.1.12

ORIGINAL RESEARCH published: 04 September 2019 doi: 10.3389/fphys.2019.01139

Jin-Sol Park^{1,2}, Ji-Young Jeon¹, Ji-Ho Yang¹ and Min-Gul Kim^{1,2}*

¹Center for Clinical Pharmacology and Biomedical Research Institute, Chonbuk National University Hospital, Jeonju 54907, Republic of Korea ²Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 54907, Republic of Korea *Correspondence: M. G. Kim; Tel: +82-63-259-3480, Fax: +82-63-259-3483, E-mail: mgkim@ibnu.ac.kr

Check for updates

Received 4 Mar 2019 Revised 11 Mar 2019 Accepted 12 Mar 2019

Keywords Cardiotoxicity, CiPA, Torsade de Pointes

pISSN: 2289-0882 eISSN: 2383-5427 In 2005, the International Council for Harmonization (ICH) established cardiotoxicity assessment guidelines to identify the risk of Torsade de Pointes (TdP). It is focused on the blockade of the human ether-à-go-go-related gene (hERG) channel known to cause QT/QTc prolongation and the QT/QTc prolongation shown on the electrocardiogram. However, these biomarkers are not the direct risks of TdP with low specificity as the action potential is influenced by multiple channels along with the hERG channel. Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative emerged to address limitations of the current model. The objective of CiPA is to develop a standardized *in silico* model of a human ventricular cell to quantitively evaluate the cardiac response for the cardiac toxicity risk and to come up with a metric for the TdP risk assessment. *In silico* working group under CiPA developed a standardized and reliable *in silico* model and a metric that can quantitatively evaluate cellular cardiac electrophysiologic activity. The implementation mainly consists of hERG fitting, Hill fitting, and action potential simulation. In this review, we explained how the *in silico* model of CiPA works, and briefly summarized current overall CiPA studies. We hope this review helps clinical pharmacologists to understand the underlying estimation process of CiPA *in silico* modeling.

Three-Dimensional Heart Model-Based Screening of Proarrhythmic Potential by *in silico* Simulation of Action Potential and Electrocardiograms

OPEN ACCESS

Edited by: Ahsan H. Khandoker,

Khalifa University, United Arab Emirates Reviewed by:

Gary Richard Mirams, University of Nottingham, Minki Hwang¹, Seunghoon Han^{2,3}, Min Cheol Park⁴, Chae Hun Leem⁵, Eun Bo Shim^{4*} and Dong-Seok Yim^{2,3*}

¹ SiliconSapiens Inc., Seoul, South Korea, ³ Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, Seoul, South Korea, ³ Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea, Seoul, South Korea, ⁴ Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea, ⁵ Department of Physiology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea

Drugs Withdrawn from Market Due to QTc Prolongation or Torsade de Pointes

Drug	Therapeutic Class	Year of Withdrawal
Prenylamine	Antianginal	1988 (EU, not marketed in US)
Terodiline	Antianginal/urinary incontinence	1991 (EU, not marketed in US)
Terfenadine	Antihistamine	1998
Sertindole	Antipsychotic	1998 (not marketed in US, EU reintroduction in 2002)
Astemizole	Antihistamine	1999
Sparfloxacin	Antibiotic	2001
Cisapride	Gastric prokinetic	2000
Droperidol	Tranquilizer/analgesic	2001
Levacetylmethadol	Methadone substitution	2003
Thioridazine	Antipsychotic	2005 (ex-US)
Propoxyphene	Opioid analgesic	2010

Adapted from Table 1 in **Stockbridge et al. Drug Safety (2013) 36:167-82 EU**, European Union; **US**, United States

Torsade de Pointes and QT prolongation

Regulatory (ICH) guidelines

- ICH S7B: The nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals
- ICH E14: The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs – randomized, placebo- and positive-controlled study in healthy volunteers to evaluate QT/QTc interval at supratherapeutic dose levels

https://www.fda.gov/media/104642/download

QTc Evaluation in Drug Development

	Nonclinical	Phase 1	Phase 2		Phase 3		FDA Filing
•	In vitro and • in vivo assays per ICH S7b	High quality ECGs in SAD/MAD studies Replace TQT St	• TQT study with Phase 1 udy	•	ECG monitoring in patients for QT prolonging drugs	•	Labeling and risk mitigation strategies for QT prolonging drugs

https://www.fda.gov/media/104642/download

QTc Prolongation and Concern for Torsade de Pointes Risk

Regulatory decisions based on benefit-risk of drug

Low Concern $\Delta \Delta QTc < 10 \text{ ms}$

Increasing Concern ∆∆QTc 10–20 ms +QTc Outliers ±Clinical AEs Definite Concern ∆∆QTc >20 ms +QTc Outliers ±Clinical AEs

QTc Outliers: individual-level QTc>500ms and/or Δ QTc>60ms Clinical AEs: TdP, sudden death, ventricular tachycardia, ventricular fibrillation or flutter, syncope, seizure

 $\Delta\Delta$ QTc, change from baseline QTc placebo corrected; AE, adverse event; TdP, torsade de pointes

Comprehensive in vitro Proarrhythmia Assay (CiPA)

Model Development and Validation Strategy

Model Development and Validation Strategy

Base cardiomyocyte model: O'Hara T, Virag L, Varro A, & Rudy Y (2011) PLoS Comput Biol 7(5):e1002061.

- 1. Modeling dynamic drughERG interactions rather than using simple IC50s
- 2. Optimizing model parameters so that the model can better recapitulate experimental data
- 3. Developing a statistical framework to translate experimental variability into prediction uncertainty

Modeling dynamic drug-hERG interactions

Circ Arrhythm Electrophysiol. 2017;10:e004628. DOI: 10.1161/CIRCEP.116.004628.)

Trapping behaviors of drugs are revealed by Milnes protocol

Figure 2. Different patterns for trapped and nontrapped drugs assessed by Milnes protocol. Shown are the mean normalized currents for the first and tenth episodes during the sustained depolarization at 0 mV after equilibration in 3 trapped drugs (**A**, dofetilide, bepridil, and terfenadine), and 3 nontrapped drugs (**B**, cisapride, verapamil, and ranolazine). Time zero corresponds to depolarization from –80 to 0 mV. Note for trapped drugs (**A**), there is a significant decrease in current peaks, whereas for nontrapped drugs (**B**), the first and tenth episodes look almost identical.

Circ Arrhythm Electrophysiol. 2017;10:e004628. DOI: 10.1161/CIRCEP.116.004628.)

Reconstruction of trapping behaviors of drugs by hERG-drug binding model

free Cmax = 81 nmol/L

Evaluation of reverse-use dependency (RUD): Verapamil

RUD: degree of APD prolongation *more pronounced at slower heart rates

Evaluation of reverse-use dependency (RUD): Dofetilide

Key Mechanism of TdP: Imbalance of Inward and Outward Currents

Early after depolarization (EAD)

Torsade de pointes

Increased ratio between inward and outward currents

Inward	Outward
I _{CaL} (L-type Ca-current)	I _{Kr} (hERG + MiRP1) (Rapidly activating delayed recitifier K-current)
I _{NaL} (Late Na-current)	I _{Ks} (Slowly activating delayed rectifier K-current)
	I _{K1} (Inward retifier K-current)
	I _{to} (Transient outward K-current)

The net current between inward and outward currents reflect their balance.

 $\mathbf{I}_{net} = \mathbf{I}_{CaL} + \mathbf{I}_{NaL} + \mathbf{I}_{Kr} + \mathbf{I}_{Ks} + \mathbf{I}_{K1} + \mathbf{I}_{to}$

qNet: Amount of electronic charge carried by Inet

Torsade Metric Score for Manual Training Data

Torsade Metric Score (qNet averaged 1-4 Cmax)

hERG (potassium channel) data: manual patch clamp Non-hERG (sodium and calcium channel) data: manual patch clamp

Prediction of the 16 Validation Drugs (Hybrid Data)

bepridil

chlorpromazine

dofetilide

mexiletine

ranolazine

sotalol

Perspectives of CiPA technology

- qNet score may be very useful for prediction of arrhythmic outcome with a drug administration at therapeutic concentration.
- However, it requires huge amount of experimental data (voltage-clamp experiments by Mines protocol).
- Calculation of uncertainty propagation requires huge amount computing resources.
- Measurement of net inward current without and with drugs in action potential clamp mode might be more practical to predict proarrhythmic risk of drugs.

Collaborators

SCHOOL OF MEDICINE, **IGKYUNKWAN UNIVERSITY**

MD, PhD. Hana Cho Hyun-Ji Kim **Bok-Geon Kim Jong Eun Park** Department of Physiology Single Cell Network Research Center

PhD. Jong-Sun Kang Department of Molecular Cell Biology Single Cell Network Research Center

MD, PhD. June Huh Division of Pediatric Cardiology, Department of Pediatrics,

Samsung Medical center

MD, PhD. Young Keun On

Division of Cardiology, Department of Medicine, Samsung Medical center

MD, PhD. Jin Han

Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center

PhD. Ki Moo Lim

Department of IT Convergence Engineering, Kumoh National Institute of Technology