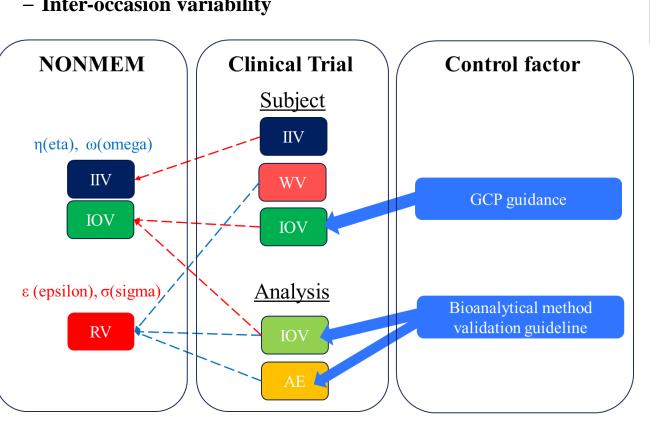


Prediction of within-subject variability using population approaches and its application to demonstrate highly variable drug

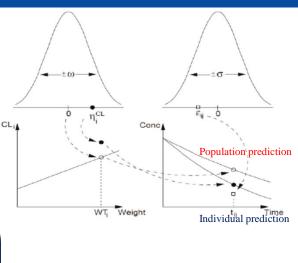
Won-ho Kang 2019. 11. 28. PAGK Trainee session

I. Background and Objective

- II. Method
- **III. Results**
- **IV. Summary and Conclusion**
- V. Appendix



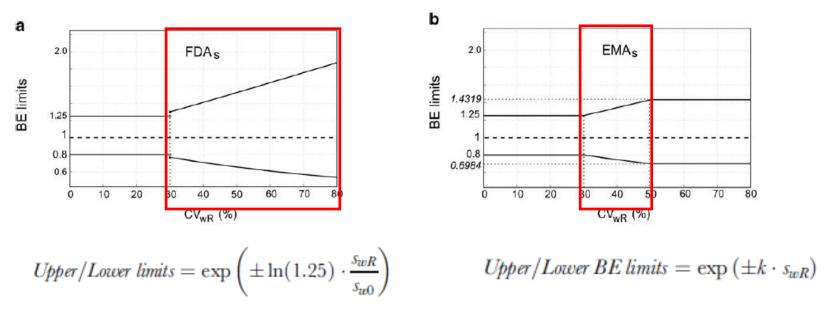
I. Background and Objective



Random effect in Pop PK data

- Unexplained differences between individuals
 - Inter-individual variability, Between-subject variability, eta (η)
 - Intra-individual variability, Residual variability, epsilon (ε)
 - Inter-occasion variability

IIV : Inter-individual variability, IOV : Inter occasional variability, RV : Residual variability, WV : Within-subject variability, **AE** : Analytical error

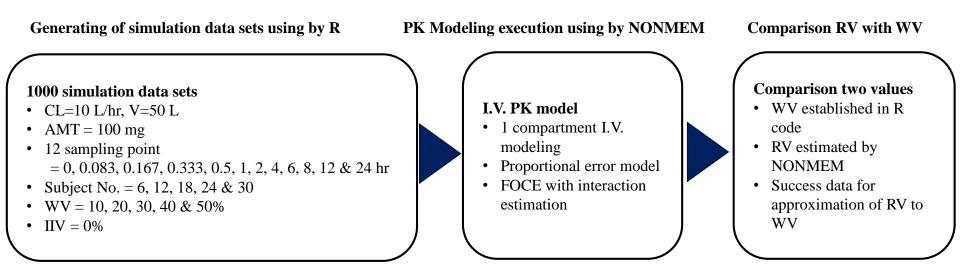


Definition of highly variable drug(HVD)

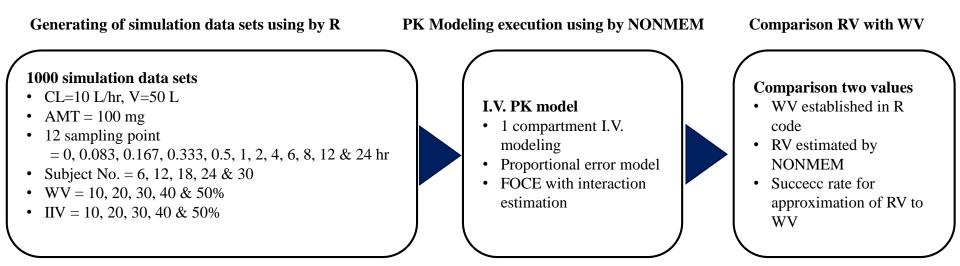
HVDs : drug products exhibiting within-subject variability of 30% (CVw, coefficient of variation) or greater in the pharmacokinetic measures AUC and/or Cmax

Widening of BE limited based on reference variability _ FDA vs EMA

Vangelis Karalis et al. Bioequivalence of Highly Variable Drugs: A Comparison of the Newly Proposed Regulatory Approaches by FDA and EMA, Pharm Res (2012) 29:1066–1077


- 1. Verification how well NONMEM can estimated residual variability through simulated population pharmacokinetic dataset under various condition
- 2. Confirmation that this population approach can be applied to the real highly variable drug case.

II. Method



A. Experiment 1 (5 different levels of WV(10%, 20%, 30%, 40%, and 50%) without IIV's change(0%)

B. Experiment 2 (5 different levels of WV(10%, 20%, 30%, 40%, and 50%) with IIV's change(10→50%)

<u>Pharmacokinetic and bioequivalence study of sugar-coated and film-coated eperisone tablets in</u> <u>healthy subjects, Hyun-Ju Lee et al., International Journal of clinical pharmacology and therapeutics, Vol. 57,</u> <u>No1(55-62), 2019</u>

R scaled approach

G/P	P1	P2	P3
A (N=12)	R	R	Т
B (N=10)	R	Т	R
C (N=11)	Т	R	R

 $R:Murex^{\ensuremath{\mathbb{R}}}$ 50 mg, Cho Dang Pharm Co., Ltd

T : Eperex[®] 50 mg, Korea United Pharmaceutical Co., Ltd

Result : Geometric mean ratio, 90% confidential intervals and within subject variability for AUCt and Cmax using the EMA method

Parameters	GMR	90% CI	SwR	CVwR(%)	BE limit
AUCt	0.9836	0.8275 ~ 1.1692	0.332	33.17	0.8 ~ 1.25
Cmax	0.9402	0.7587 ~ 1.1652	0.474	50.21	0.6984 ~ 1.4319

Work flow

Random sampling of PK dataset (N =6, 12, 18, 24, 30)

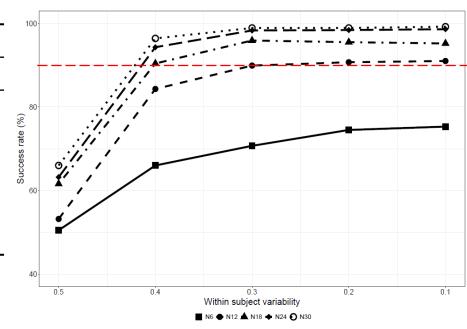
Random sampling from reference drug's PK data

Estimation PK parameter & Sigma(σ) value **PK modeling : 1 compartment, oral absorption, first-order elimination**

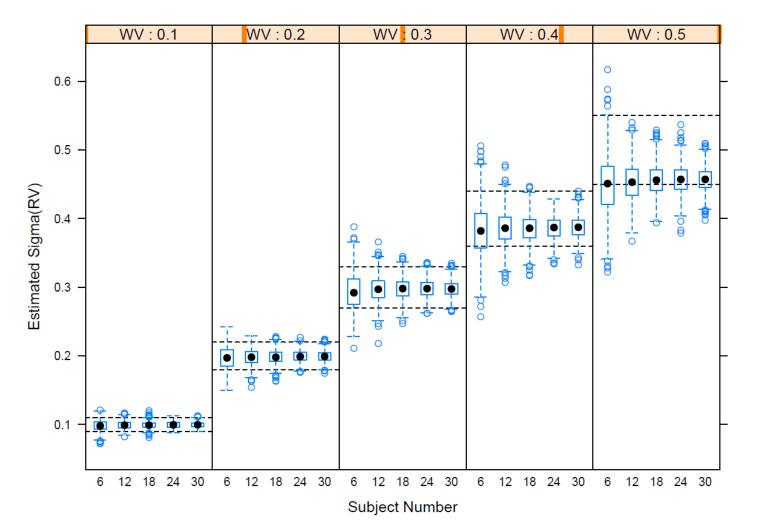
Model diagnostic

III. Results

Result for Experiment 1


(5 different levels of WV(10%, 20%, 30%, 40%, and 50%) without IIV's change(0%)

_	Success rate(%)* for each subject number						
Setting WV(%)	N=6	N=12	N=18	N=24	N=30		
10	75	91	95	99	99		
20	75	91	96	98	99		
30	71	90	96	98	99		
40	66	84	90	94	96		
50	51	53	62	63	66		


Tabulated summary for results of first experiment *Success rate at which to estimated sigma values are included in True value(Setting WV values) \pm 10%

CNŪ

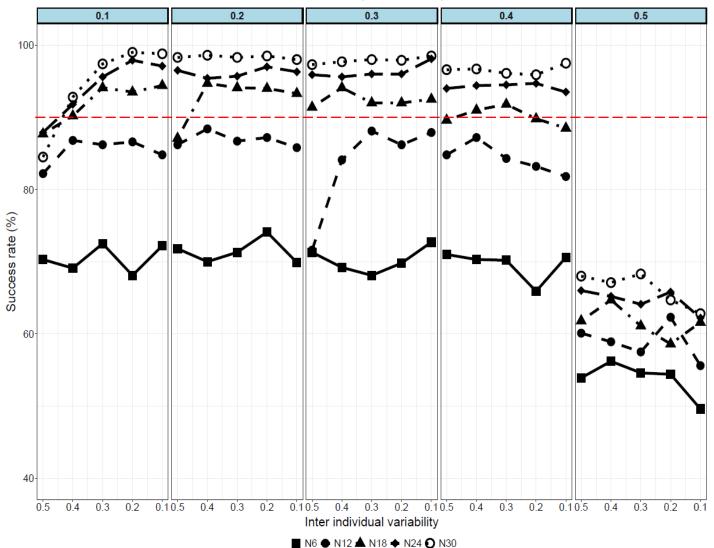
PM Group

CNUE Result for Experiment 1 _ Cont'd (5 different levels of WV(10%, 20%, 30%, 40%, and 50%) without IIV's change(0%)

Within Subject Variability

Result for Experiment 2

(5 different levels of WV(10%, 20%, 30%, 40%, and 50%) with IIV's change(10→50%)

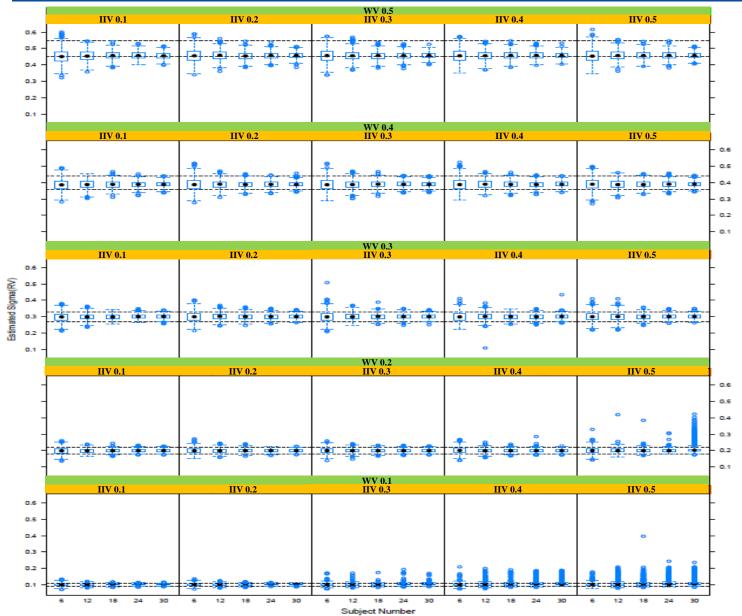

Setting Condition		Su	Success rate(%)* for each subject number				
WV(%)	IIV(%)	N=6	N=12	N=18	N=24	N=30	
	10	72	85	94	97	99	
	20	68	87	94	98	99	
10	30	73	86	94	96	97	
	40	69	87	90	92	93	
	50	70	82	88	88	85	
	10	70	86	93	96	98	
	20	74	87	94	97	99	
20	30	71	87	94	96	98	
	40	70	88	95	95	99	
	50	72	86	87	97	98	
	10	73	88	93	<u>98</u>	99	
	20	70	86	92	96	98	
30	30	68	88	92	96	98	
	40	69	84	94	96	98	
	50	71	72	91	96	97	
	10	71	82	89	94	98	
	20	66	83	90	95	96	
40	30	70	84	92	94	96	
	40	70	87	91	94	97	
	50	71	85	90	94	97	
	10	50	56	62	62	63	
	20	54	62	59	66	65	
50	30	55	58	61	64	68	
	40	56	59	65	65	67	
	50	54	60	62	66	68	

*Success rate at which to estimated sigma values are included in True value(Setting WV values) \pm 10%

CNU Result for Experiment 2 Cont'd

PM Group

(5 different levels of WV(10%, 20%, 30%, 40%, and 50%) with IIV's change(10→50%)



Within Subject Variability

Result for Experiment 2 _ Cont'd

(5 different levels of WV(10%, 20%, 30%, 40%, and 50%) with IIV's change(10→50%)

The result for real application

Subject No.	6	12	18	24	30
Sigma, σ (%)	44.9	47.7	44.5	43.8	47.2

Cf. Result from original reference

Parameters	GMR	90% CI	SwR	CVwR(%)	BE limit
AUCt	0.9836	0.8275 ~ 1.1692	0.332	33.17	0.8 ~ 1.25
Cmax	0.9402	0.7587 ~ 1.1652	0.474	50.21	0.6984 ~ 1.4319

Pharmacokinetic and bioequivalence study of sugar-coated and film-coated eperisone tablets in healthy subjects, Hyun-Ju Lee et al., International Journal of clinical pharmacology and therapeutics, Vol. 57, No1(55-62), 2019

IV. Summary and Conclusion

- When the IIV was no change(0%)
 - \rightarrow WV 10~30% : 90% or more prediction success rate with 12 or more subjects
 - \rightarrow WV 40% : 90% or more prediction success rate with 18 or more subjects
 - \rightarrow WV 50% : Underestimation at 6~30 subjects
- When the IIV was change(10~50%)
 - \rightarrow WV 10~40% : 90% or more prediction success rate with 18 or more subjects
 - \rightarrow WV 50% : Underestimation at 6~30 subjects
- Real HVD case(eperisone)
 - → **Our Pop. approach** result : **44** ~**47%** for RV at which **6~30 subject** number cf. BE result : 33.17% as a CV_{wR} for AUC and 50.21% as CV_{wR} for Cmax

In conclusion, we have confirmed that our methodology is relatively accurate in well-estimating within subject variability from population PK data. Also, we have confirmed that it can be used as a tool to judge the highly variable drug.

Thank you